Fractions, Projective Representation, Duality, Linear Algebra and Geometry

نویسنده

  • Václav Skala
چکیده

This contribution describes relationship between fractions, projective representation, duality, linear algebra and geometry. Many problems lead to a system of linear equations and this paper presents equivalence of the cross–product operation and solution of a system of linear equations Ax = 0 or Ax = b using projective space representation and homogeneous coordinates. It leads to conclusion that division operation is not required for a solution of a system of linear equations, if the projective representation and homogeneous coordinates are used. An efficient solution on CPU and GPU based architectures is presented with an application to barycentric coordinates computation as well.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rings of Singularities

This paper is a slightly revised version of an introduction into singularity theory corresponding to a series of lectures given at the ``Advanced School and Conference on homological and geometrical methods in representation theory'' at the International Centre for Theoretical Physics (ICTP), Miramare - Trieste, Italy, 11-29 January 2010. We show how to associate to a triple of posit...

متن کامل

THE DUALITY OF THE L?-REPRESENTATION ALGEBRA ?(S ) OF A FOUNDATION SEMIGROUP S AND FUNCTION ALGEBRAS

In the present paper for a large family of topological semigroups, namely foundation semigroups, for which topological groups and discrete semigroups are elementary examples, it is shown that ?(S) is the dual of a function algebra.

متن کامل

Triple factorization of non-abelian groups by two maximal subgroups

The triple factorization of a group $G$ has been studied recently showing that $G=ABA$ for some proper subgroups $A$ and $B$ of $G$, the definition of rank-two geometry and rank-two coset geometry which is closely related to the triple factorization was defined and calculated for abelian groups. In this paper we study two infinite classes of non-abelian finite groups $D_{2n}$ and $PSL(2,2^{n})$...

متن کامل

The Design of Linear Algebra and Geometry

Conventional formulations of linear algebra do not do justice to the fundamental concepts of meet, join, and duality in projective geometry. This defect is corrected by introducing Clifford algebra into the foundations of linear algebra. There is a natural extension of linear transformations on a vector space to the associated Clifford algebra with a simple projective interpretation. This opens...

متن کامل

K-theory of algebraic curves

There exists a duality between elliptic curves and noncommutative tori, i.e. C∗-algebras generated by the unitary operators u and v such that vu = euv. We show that this duality can be included into a general picture involving the algebraic curves of higher genus. In this way we prove that a big part of geometry of complex algebraic curves can be developed from the K-theory of a noncommutative ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1708.06684  شماره 

صفحات  -

تاریخ انتشار 2016